Introduction to
Behavioral Programming
In Java

February 2012

Weizmann Institute of Science Ben Gurion University

Team members
Past and present — more or less in chronological order — updated 6/2012.

» David Harel (*) » Amir Kantor » Amir Nissim

» Rami Marelly » Michal Gordon » Robby Lampert

» Hillel Kugler » Tal Berger » Guy Wiener

» Shahar Maoz » Smadar Szekely (*) » Yaniv Sa’ar

» Itai Segall » Assaf Marron (*) » Nir Eitan

» Yoram Atir » Gera Weiss (*) » Guy Katz

» Asaf Kleinbrot » Daniel Barkan » Michael Bar-Sinai
» Dan Barak » Guy Weiss » Moshe Weinstock
» Avital Sadot » Yaarit Natan » Ronen Brafman

Weizmann Institute
of Science

Ben Gurion University

(*) contact persons for the team

The Behavioral Programming Vision

Can complex software be developed from

simple threads of behavior

by

automatic interweaving ?

Humans interweave behavior threads all the time...

Driving Directions Daily Schedule

@ 9. Merge onto I-78 W
Partial toll road

Drive for 4 hrs.

About 2 hours 1 min

10. Merge onto 1-81 S

About 39 mins Stop for Lunch

|

Drive for 5 hrs.

A 6-day trip from NYC to LA

.. CAN software be developed this way?

dddddddddddddd
ssssssssssss

LSC: A visual language for scenario specification - e

» Damm and Harel 2001, Harel and Marelly 2003 st

» Natural yet executable scenario-based specification s
> Initially for requirement specification, evolved into a programming language

» PlayGo — an IDE for programming with LSC

class AddHotFiveTimes extends BThread {

BPJ: A package for programming scenarios in Java
public void r‘unBThr‘ead()b{+

(and equivalents for other languages) for Gint 33 183 140) (

bSync(addHot, none, none);
}
}
}

» Harel, Marron, and Weiss 2010
» Bringing advantages of scenario-based specification to programming

» Integrate with & complement other paradigms (OOP, aspects, rule-based, agile, ...).

Incremental development in Java with BP)

class AddHotFiveTimes extends BThread {
public void runBThread() {
for (int i=1; i<=5; i++) {
bSync(addHot, none, none);

}

class AddColdFiveTimes BThread {
public void runBThread() {
for (int i=1; i<=5; i++) {
bSync(addCold, none, none);

}

class Interleave extends BThread {
public void runBThread() {
while (true) {
bSync(none, addHot, addCold);
bSync(none, addCold, addHot);
}
}
}

Why do we need this?
A key benefit: incremental development

Need to accommodate a cross-cutting requirement? Add a module

Need to refine an inter-object scenario? Add a module

Need to remove a behavior? Add a module

.. ? Add a module

Behavior execution cycle

1. All behavior threads (b-threads) post declarations:

¢ Req uest events: propose events to be considered for triggering;

* \Walt for events: ask to be notified when events are triggered;

¢ BIOCk events: temporarily forbid the triggering of events.

2. When all declarations are collected:

An event that is requested and not blocked is selected.

All b-threads waiting for this event can update their declaration

Belhavior execution cycle

Wait

—)

| Behavior Threads ’H

Request Block

Belhavior execution cycle

Wait

—)

| Behavior Threads ’H

Request Block

Belhavior execution cycle

Wait

—)

| Behavior Threads ’H

Request Block

The BRY Library anel AP

B-threads are Java threads

Events and event sets are Java objects and collections

Development and execution do not require special environments

Direct integration with other Java code:

class MyBThread extends BThread {
void runBthread() {

bSync(requestedEvents, watchedEvents, blockedEvents);

* The transition system is implicit
Online: The Group’s SVN

Example: Coding b-threads in Java

class AddHotFiveTimes extends BThread {
public void runBThread() {
for (int i=1; i<=5; i++) { -
bSync(addHot, none, none);
}
}
}
class AddColdFiveTimes BThread { addHot
public void runBThread() { addCold
for (int i=1; i<=5; i++) { ‘ addHot
bSync(addCold, none, none); addCold
} addHot
} addCold
} addHot
addCold
class Interleave extends BThread { addHot
public void runBThread() { 1] addCold

while (true) {
bSync(none, addHot, addCold);
bSync(none, addCold, addHot);

. b

Main application: reactive systems

Complexity stems from the need to
interleave many simultaneous behaviors

Alignment of code modules with requirements

When | put two Xs in a line, you
need to put an O in the third O

square

X

Each new game rule or strategy is added in a

separate b-thread

without changing existing code

Example: Flying a quadrotor helicopter

To correct the angle:

block SpeedUpR4 {

T request SpeedUpR2 \

{ block SlowDownR2

request SlowDownR4 l

To increase altitude: request SpeedUpR1
block SlowDownR1

request SpeedUpR4

block SlowDownR4 request SpeedUpR2

* block SlowDownR2

request SpeedUpR3
block SlowDownR3

Selected
event:

SpeedUpR2

Balancing a quadrotor = behaviorally

Y oaxis [m)

Results of applying the quadrotor
Simulink model of Bouabdalla et al
where a linear transformation box
is replaced with behavior threads.

Pitch, yaw and roll angles are
stabilized after a few seconds.

rn pitch

06

o2t/ -
I

II‘
{4

B ol B]

SE LRL ARE BAS N

BUt...

» How do we know when we are done?

» When each module is programmed separately, how do we avoid
conflicts?

Ve W4 -

i

A A
v

N

y \

Yy

» An answer: Model Checking + Incremental Development

b-Threae Formal Delinition
A b-thread is a tuple (S, E, —, init,, R, B)
> Where (S, E, —,init) is a transition system, and

> for each state s:
+ the set R(s) models the requested events

+ the set B(s) models the blocked events

9
€1,€5 . R(s,)={e e} €1,€7,€9

"\ Blsy)={eg}

v

The runs of 8 set of lo-threacs

Composition of the b-threads {(S,, E., —,, init,, R;, B,): i=1,...,n} is
defined as a product transition system.

The composition contains the transition (S1,...,5,) — (s],...,s") if:

e E U R;(s;) /\ e ¢ U B;(s;)

\ >4

e is requested e is not blocked

T
/\(\(eEEi:>sii>s;)J/\ \(egéEi:>5i:S;)j)
i=1 N ~

affected b-threads mowve unaffected b-threads don’t mowve

Behavior Thread States
b-thread states at bSync

labelNextVerificationState(“A”);

bSync(..);

if(lastEvent == eventl) { eventl
. Y
iabelNextVerificationState(“B”); E;
bSync(..);

}

if(lastEvent == event2) { event2

labelNextVerificationState(“C”);
bSync(..);

Behavioral Program State Graph

Program
states are the
Cartesian

product of
b-thread

states

Pmc: Model-checking behavioral
programs “in-vive” (c.f. Java Path Finder)

o

Transition using standard
execution (by the native JVM)

Backtrack using Apache /

javaflow continuations / Notations for
/ nondeterministic
/ \' transitions
\ /@
\ _/ l
N vy State tagging for
safety and
State matching and search liveness
pruning by b-threads properties by
b-threads

Deadlocks detected
automatically

Counterexample: A path to a bad state

Moeel-checker-assistee)
cevelopment of Tic-Tac-Toe

» Initial Development:

>

>
>
>

DetectXWin, DetectOWin, DetectDraw
EnforceTurns

DefaultMoves

XAll1Moves

» Modify b-threads to prune search / mark bad states

» Model Check - Counterexample = Add b-thread / change priority:

VvV V V V V

PreventThirdX

PreventXFork X O
PreventAnotherXFork

AddThirdo R

PreventYetAnotherXFork

Counterexamples as scenarios

» Let c=e,, .., e, ..,e, beacounterexample

» Can generalize and code new b-threads or,

» Using counterexample in a patch behavior. E.g.,

> Let e_ be the last event requested by the system

+ Waitfore,, .., e _;

+ Block e,
> Other b-threads will take care TR
of the right action, “the detour”. | STREET

CLOSED|

> Model-check again s)

Other examples and experiences

» Bridge-crossing problem

» Dining Philosophers

Initial
Perto

r

Model-Checking
Mance

Time (seconds) otates
Spin/BEEM BPme BPme Spin/BEEM BPmec BPme
database counterexample no deadlock database counterexample no deadlock
i&ﬁﬁhw 0 0.031 0.063 80 50 80
Eﬂﬁﬁhw 0 0.063 0.0172 720 528 728
::ii(li;:;];ﬁers 4.2 3.812 342 531440 16632 531440
4 persons 0 0.547 N/A 06194 2 N/A

crossing bridge

Umitations / eppertunities
ef BPme

»

»

»

»

»

»

»

Abstracts program only per behavioral states
Dependent on application for state labeling
Single threading during model-checking
Dependency on Javaflow

No support for dynamic B-Threads

Application-dependent
performance

Explicit MC only

Visualization ancd Comprehension
AddHotThreeTimes | AddColdThreeTimes Interleave
Leader Leader Active

B8
R | Y& AddHot(ID=... R | @ AddCold{ID... R

B 1 AddHot(ID=0) ¥ AddHot(ID=...
B B B AddCold(ID...
R | ® AddHot(D=... R | ¥¢ AddCold(ID... R

B 2 AddCold(ID=1) ¥r AddCold(ID...
B B B AddHot(ID=...
R | Y& AddHot(ID=... R | @ AddCold{ID... R

B3 AddHot(ID=0) ¥r AddHot(ID=...
B B B AddCold(ID...
R | ® AddHot(D=.. R

& 4 AddCold(ID=1) ¥r AddCold(ID...
B B AddHot(ID=...

Visualization ancd Comprehension

Blocking to prevents

playing out of turn o

Event
trace
(rows)
with
b-
thread
states
and

R/W/B
event
sets

B-threads (columns)in priority order Prioritizing
program
€«
::UserMove ::EnforceTums :SquareTaken @::Defs\ultOMoves m OVGI’ USGI’
Leader Acte Acte [Leade 1 _.ua/ and
\EE_ | R R R | < ® O(1.1XID=... lR_ 4 Click{0,0)... dEfense
B 1 Click0,0)iD=626) [| mm\ﬁ —j 1 0.0XID=5... D E X(O.0XID=... o] — over
L[kl o Ok = el A€ default
|7 | # xoox0- R R R E oo 10=... moves
B2 X(0,0)1D=627) * x [eoxo=s.. ||| [W] xeooxo-... v |
B Ble o SHE B 7/
1 :
T =7 A lower priority event (on VT
S3 ot E e E right), is selected because a &
- higher-priority event (on —
IR i E left) iS blocked R_' ® O(.AXID=... IR A Click(0,1)...
B 4 Click(0,1)(ID=628) * ek || : nd
B : B|w B D ©2x0=e.. D ls_ B
Iz | = x(o,lﬂm-m lI= : lI= : R R|® n(1j1xu>=.u
Bs X(0,1)(ID=629) m w X j W (0. 1)ID=6... F X(0.,1XID=...
B L] o 3 B (0.0)XID=6... ; B B
1 T T T
| | | _ | H
R R R R | ¥ 0(0,2)ID=... R | ® O¢1.1X10=...
86 0(0,2)(D=434) Cliek * o |] * o
B B x E ©oxiD=6... D B 5

But still ...

» Can it scale to large applications?

» ... and what about external events?

Remote Events = Local Behavior

Real-life behavioral applications require distributed execution
@ Asynchronous communication between nodes
@ Synchronous collaboration inside nodes
@ Each node has scenarios for handling remote events

N

(

Research Directions

> Compositional model-checking
> Run-time model-checking
> Program synthesis and repair

> Intuitive programming platforms

> Applications in robotics and
hybrid control

> More

<

Interweaving

| E

;%352?5

Verification

A A

Scalability

X

¥

Thank You !

@ =
’ 4
X
S B @
n & SO
= y e—
d. b Y
s v:"'CW Y \ »
R i =
w o

BACKUP SLIDES

BPrne support of falrness constraints (1 off 2)

— Unconditional : “Every process gets its turn infinitely often”.
O~-O~O~O~O~O~O~OX
—> — — —> —> —> —>
B

— Strong : “Every process that is enabled infinitely often gets its turn infinitely
often”

020202050502 020)4

— Weak “Every process that is continuously enabled from a certain time instant
on gets its turn infinitely often”

020202020202 020) ¢

Liveness Testing with Fairness Constraints (2 of 2))

» Input: fairness constraints as event sets

» MC: Look for cold states only in FAIR cycles

Example of Belhaviors in Tic-Tac-1oe

Move events:

Game events:

X<e,e>, . X<2,2>, O<e,e>, . O<2,2>

OWin, XWin, Tie

EnforceTurns: One player marks a square in a 3 by 3 grid with X, then the other marks a
square with O, then it is X’s turn again, and so on;

SquareTaken: Once a square is marked, it cannot be marked again;

DetectWin: When a player marks three squares in a horizontal, vertical, or diagonal line,
she wins;

AddThirdoO: After marking two Os in a line, the O player should try to mark the third
square (to win);

PreventThirdX: After the X player marks two squares in a line, the O player should try to mark
the third square (to foil the attack);

DefaultOMoves: When other tactics are not applicable, player O should prefer the center

square, then the corners, and mark an edge square only when there is no
other choice;

Jawarlow

» http://commons.apache.org/sandbox/javaflow/

» Save a thread’s stack in an object called a
continuation.

» Can restore the continuation in any thread —and
continue execution from there

» BPmc optionally serializes the continuation with all
pointed objects

» See BP user guide

http://commons.apache.org/sandbox/javaflow/

Some answers to common questions and challenges

What about conflicting requirements'.;/ ‘

» Model Checking |

» Incremental development \
> ...

Scalability in terms number of behaviors
and interleaving complexity?

» Agent oriented architectures [/—’gj
s

» Machine learning for event selection
> ...

Comprehension of systems constructed by
behavior composition?

» Trace visualization tool
> ...

