
1

Introduction to
Behavioral Programming

In Java

Weizmann Institute of Science

February 2012

Ben Gurion University

2

» David Harel (*)

» Rami Marelly

» Hillel Kugler

» Shahar Maoz

» Itai Segall

» Yoram Atir

» Asaf Kleinbrot

» Dan Barak

» Avital Sadot

» Amir Nissim

» Robby Lampert

» Guy Wiener

» Yaniv Sa’ar

» Nir Eitan

» Guy Katz

» Michael Bar-Sinai

» Moshe Weinstock

» Ronen Brafman

(*) contact persons for the team

» Amir Kantor

» Michal Gordon

» Tal Berger

» Smadar Szekely (*)

» Assaf Marron (*)

» Gera Weiss (*)

» Daniel Barkan

» Guy Weiss

» Yaarit Natan

Weizmann Institute
of Science Ben Gurion University

3

Can complex software be developed from

simple threads of behavior

by

automatic interweaving ?

4

A 6-day trip from NYC to LA

Daily Schedule

...
Drive for 4 hrs.

Stop for Lunch

Drive for 5 hrs.

…

Driving Directions

…

…

5

LSC: A visual language for scenario specification

 Damm and Harel 2001, Harel and Marelly 2003

 Natural yet executable scenario-based specification

 Initially for requirement specification, evolved into a programming language

 PlayGo – an IDE for programming with LSC

class AddHotFiveTimes extends BThread {
 public void runBThread() {
 for (int i=1; i<=5; i++) {
 bSync(addHot, none, none);
 }
 }
}

BPJ: A package for programming scenarios in Java
 (and equivalents for other languages)

 Harel, Marron, and Weiss 2010

 Bringing advantages of scenario-based specification to programming

 Integrate with & complement other paradigms (OOP, aspects, rule-based, agile, …).

6

class AddHotFiveTimes extends BThread {
 public void runBThread() {
 for (int i=1; i<=5; i++) {
 bSync(addHot, none, none);
 }
 }
}

Req. 3.1

Patch 7.1

class Interleave extends BThread {
 public void runBThread() {
 while (true) {
 bSync(none, addHot, addCold);
 bSync(none, addCold, addHot);
 }
 }
}

Req. 5.2.9

class AddColdFiveTimes BThread {
 public void runBThread() {
 for (int i=1; i<=5; i++) {
 bSync(addCold, none, none);
 }
 }
}

Need to accommodate a cross-cutting requirement? Add a module

Need to refine an inter-object scenario? Add a module

Need to remove a behavior? Add a module

. . . ? Add a module

7

8

1. All behavior threads (b-threads) post declarations:

• Request events: propose events to be considered for triggering;

• Wait for events: ask to be notified when events are triggered;

• Block events: temporarily forbid the triggering of events.

2. When all declarations are collected:

An event that is requested and not blocked is selected.

All b-threads waiting for this event can update their declaration

9

B-s

Block

Wait

Request

Behavior Threads

1
0

B-s

Block

Wait

Request

Behavior Threads

1
1

B-s

Block

Wait

Request

Behavior Threads

class MyBThread extends BThread {
 void runBthread() {
 …
 bSync(requestedEvents, watchedEvents, blockedEvents);
 …
 }
}

• B-threads are Java threads

• Events and event sets are Java objects and collections

• Development and execution do not require special environments

• Direct integration with other Java code:

• The transition system is implicit

1
2

Online: The Group’s SVN

addHot
addHot
addHot
addHot
addHot

1
3

class AddHotFiveTimes extends BThread {
 public void runBThread() {
 for (int i=1; i<=5; i++) {
 bSync(addHot, none, none);
 }
 }
}

class AddColdFiveTimes BThread {
 public void runBThread() {
 for (int i=1; i<=5; i++) {
 bSync(addCold, none, none);
 }
 }
}

class Interleave extends BThread {
 public void runBThread() {
 while (true) {
 bSync(none, addHot, addCold);
 bSync(none, addCold, addHot);
 }
 }
}

addHot
addHot
addHot
addHot
addHot
 addCold
 addCold
 addCold
 addCold
 addCold

addHot
 addCold
addHot
 addCold
addHot
 addCold
addHot
 addCold
addHot
 addCold

1
4

Complexity stems from the need to
interleave many simultaneous behaviors

1
5

When I put two Xs in a line, you

need to put an O in the third
square

1
6

Each new game rule or strategy is added in a

separate b-thread

without changing existing code

1
7

request SpeedUpR2

block SlowDownR2

request SlowDownR4

block SpeedUpR4

To correct the angle:

request SpeedUpR2

block SlowDownR2

request SpeedUpR1

request SpeedUpR4

block SlowDownR4

block SlowDownR3

request SpeedUpR3

block SlowDownR1

To increase altitude:

Selected
event:

SpeedUpR2

1
8

Results of applying the quadrotor
Simulink model of Bouabdalla et al
where a linear transformation box
is replaced with behavior threads.

Pitch, yaw and roll angles are
stabilized after a few seconds.

1
9

» How do we know when we are done?

» When each module is programmed separately, how do we avoid
conflicts?

» An answer: Model Checking + Incremental Development

A b-thread is a tuple hS, E, , initi, R, B i

˃ Where hS, E, , initi is a transition system, and

˃ for each state s:

+ the set R(s) models the requested events

+ the set B(s) models the blocked events

20

e1,e2 e1,e7, e9 R(s2)={e1,e7}
B(s2)={e8}

R(s1)={e1,e2}
B(s1)={e3,e4}

s1 s2

Composition of the b-threads fhSi, Ei, i, initi, Ri, Bi i: i=1,...,ng is
defined as a product transition system.

The composition contains the transition if:

2
1

2
2

.

.

labelNextVerificationState(“A”);

bSync(…);

if(lastEvent == event1) {

 .

 .

 .

 labelNextVerificationState(“B”);

 bSync(…);

}

if(lastEvent == event2) {

 .

 .

 .

 labelNextVerificationState(“C”);

 bSync(…);

}

A

B

C

event1

event2

Program
states are the
Cartesian
product of
b-thread
states

2
3

A

B

C

D

E

G

I

H
ADG

BDG

…

…
AEG

…
…

BDH
AEI

2
4

Backtrack using Apache
javaflow continuations

Transition using standard
execution (by the native JVM)

State matching and search
pruning by b-threads

State tagging for

safety and

liveness

properties by
b-threads

Notations for

nondeterministic
transitions

Deadlocks detected
automatically

2
5

1

2

3

4

» Initial Development:

˃ DetectXWin, DetectOWin, DetectDraw

˃ EnforceTurns

˃ DefaultMoves

˃ XAllMoves

» Modify b-threads to prune search / mark bad states

» Model Check  Counterexample  Add b-thread / change priority:

˃ PreventThirdX

˃ PreventXFork

˃ PreventAnotherXFork

˃ AddThirdO

˃ PreventYetAnotherXFork

2
6

X

O

O

O

X

X

X

» Let c=e1, …, em, …,en be a counterexample

» Can generalize and code new b-threads or,

» Using counterexample in a patch behavior. E.g.,

˃ Let em be the last event requested by the system

+ Wait for e1, …, em-1

+ Block em

˃ Other b-threads will take care
of the right action, “the detour”.

˃ Model-check again

2
7

» Bridge-crossing problem

» Dining Philosophers

» Scheduling in a signal-processing board

2
8

2
9

» Abstracts program only per behavioral states

» Dependent on application for state labeling

» Single threading during model-checking

» Dependency on Javaflow

» No support for dynamic B-Threads

» Application-dependent
performance

» Explicit MC only

3
0

3
1

Blocking to prevents
playing out of turn

A lower priority event (on

right), is selected because a

higher-priority event (on

left) is blocked.

Event
trace

(rows)
with

b-
thread
states
 and

R/W/B
event
 sets

Prioritizing

program

over user

and

defense

over

default
moves

B-threads (columns) in priority order

Understanding composite behavior – a trace visualization tool [ICPC ‘11]

3
2

Blocking to prevents
playing out of turn

A lower priority event (on

right), is selected because a

higher-priority event (on

left) is blocked.

Event
trace

(rows)
with

b-
thread
states
 and

R/W/B
event
 sets

Prioritizing

program

over user

and

defense

over

default
moves

B-threads (columns) in priority order

Understanding composite behavior – a trace visualization tool [ICPC ‘11]

3
3

» Can it scale to large applications?

» … and what about external events?

3
4

˃ Compositional model-checking

˃ Run-time model-checking

˃ Program synthesis and repair

˃ Intuitive programming platforms

˃ Applications in robotics and
hybrid control

˃More

3
5

3
6

Interweaving Verification Scalability

3
7

– Unconditional : “Every process gets its turn infinitely often”.

– Strong : “Every process that is enabled infinitely often gets its turn infinitely
often”

– Weak “Every process that is continuously enabled from a certain time instant
on gets its turn infinitely often”

3
8

B B B A A B A

B

A
B

A
B

A
B

B B B A A B A

B

A
B

B
A
B

B B B A A B A

B

» Input: fairness constraints as event sets

» MC: Look for cold states only in FAIR cycles

3
9

B B B A A B A

B

B B B A A B A

A

4
0

Move events: X<0,0>, … , X<2,2>, O<0,0>, … , O<2,2>

Game events: OWin, XWin, Tie

EnforceTurns: One player marks a square in a 3 by 3 grid with X, then the other marks a
square with O, then it is X’s turn again, and so on;

SquareTaken: Once a square is marked, it cannot be marked again;

DetectWin: When a player marks three squares in a horizontal, vertical, or diagonal line,
she wins;

AddThirdO: After marking two Os in a line, the O player should try to mark the third
square (to win);

PreventThirdX: After the X player marks two squares in a line, the O player should try to mark
the third square (to foil the attack);

DefaultOMoves: When other tactics are not applicable, player O should prefer the center
square, then the corners, and mark an edge square only when there is no
other choice;

» http://commons.apache.org/sandbox/javaflow/

» Save a thread’s stack in an object called a
continuation.

» Can restore the continuation in any thread – and
continue execution from there

» BPmc optionally serializes the continuation with all
pointed objects

» See BP user guide

4
1

http://commons.apache.org/sandbox/javaflow/

4
2

What about conflicting requirements?

 Model Checking

 Incremental development

 …

Scalability in terms number of behaviors
and interleaving complexity?

 Agent oriented architectures

 Machine learning for event selection

 …

Comprehension of systems constructed by
behavior composition?

 Trace visualization tool

 …

